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Tunneling in to Superconductors
Tunneling into and out of a superconductor gives insights in to the density of states, the energy gap,
as well as the pairing mechanism. A curious result is that coherence effects are largely suppressed in
single-particle tunneling.

A. Tunneling Hamiltonian

We imagine two metals separated by an insulating tunnel barrier. A potential difference is applied
between the two metals and the resulting net current is measured. In other words, one measures the “I-V
Curve” of the junction. Here we consider only single particle (as opposed to Cooper pair) tunneling.
The tunneling Hamiltonian is

HT =
∑

σ,k,q Tkqc
+
kσcqσ +

∑
σ,k,q T

∗
qkc

+
qσckσ,

where the first term is for forward tunneling and the second term is for reverse tunneling. Momenta k, q
refer to the left and right metal, respectively. This assumes no spin-flip in the tunneling process.
Because the insulating barrier does not support quasiparticle states, to describe tunneling one has to
extract an electron or hole from one metal, realizing the particle in some sense, and then deposit it in
the other metal. This essentially destroys the coherence effects discussed in the last lecture, which arise
from the fact that Bogoliubon’s are a coherent superposition of electron and hole.
Josephson introduced new operators to create electrons and holes in the metals with probability unity.
Josephson’s electron and hole creation operators are,
γ+
ek0 = u∗

kck,↑ − v∗kS
+
k c−k↓

γ+
hk0 = u∗

kSkc
∗
k,↑ − v∗kc−k↓,

where S+
k creates a (k, ↑), (−k, ↓) Cooper pair.

In fact one can show that γ+
hk0 = Skγ

+
ek0. These excitations still have energy Ek =

√
ξ2k +∆2

k.

On page 72, Tinkham shows that coherence effects are lost when considering the tunneling Hamiltonian.
This leads to some simplifications in understanding tunneling processes into or out of a superconductor.

B. Tunnel Current

Because coherence effects are lost, one can use a semiconductor model of single particle states for
tunneling. The superconducting density of states is reflected about the chemical potential and all single-
particle states below the Fermi energy are filled at zero temperature, and all single-particle states above
are empty. At finite temperature the Fermi distribution f(E) describes the number of quasiparticles in
the excited states.

The net tunneling current is given by,

I = A
∫ +∞
−∞ |T |2 NL(E)NR(E+ eV ) [f(E)− f(E + eV )] dE, where L refers to the left metal and R refers

to the right metal, and V is the potential difference, T is some (assumed independent of energy) tunnel-
ing matrix element, and N(E) is the density of states. Note that the energy integrals are interrupted in
the range where the densities of states are zero.
The tunneling current is clearly dominated by the energy dependence of the densities of states N(E) of
the two banks.

There are three cases to consider.
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C. N-I-N, N-I-S and S-I-S Tunneling

In the N-I-N case we take the DOS to be constant near the Fermi energy, and the I-V curve is linear
in voltage: ININ = GNNV with GNN = A |T |2 NL(0)NR(0)e.

In the S-I-N case at zero temperature there will be no current until the Fermi energy of the normal
metal lines up with the gap edge in the superconductor, i.e. eV = ±∆, at which point the current
quickly rises and then eventually increases linearly with voltage. At finite temperature the turn-on at ∆
is washed out by the excited quasiparticles in the normal metal.
The differential conductance can be written as,

GNS = dINS

dV = GNN

∫ +∞
−∞

NS(E)
NN (E)

[
−∂f(E+eV )

∂(eV )

]
dE.

The NS(E) DOS term is strongly peaked at ∆ and the Fermi function derivative becomes more and
more strongly peaked as temperature approaches zero. In the limit of zero temperature it becomes a
delta function and picks out the superconducting DOS at the voltage bias. As such the low-temperature
differential conductance directly measure the superconducting DOS.

In the S-I-S case there will be current peaks at voltages that line up the gap edges for both eV =
∆L +∆R and for eV = |∆L −∆R|.

D. Strong Coupling Superconductors and Eliashberg Theory

The BCS weak-coupling approximation D(EF )V << 1 gives universal results for the gap ratio
∆(0)/kBTc, specific heat jump at Tc, isotope effect exponent, etc. However many superconductors
show deviations from these universal values, and often tend to systematically deviate on one side of the
universal value (e.g. they almost always show ∆(0)/kBTc > 1.76). The over-simplified treatment of
the pairing interaction is partly responsible for these deviations. Eliashberg developed a more complete
treatment of the pairing interaction by introducing the function α2(ω)F (ω), where ~ω is the energy of
the Bosons that provide the electron pairing, α(ω) is the electron-Boson coupling strength, and F (ω) is
the Boson density of states. For superconductors paired by the electron-phonon interaction, substitute
the word ‘phonon’ for Boson.

Strong coupling means that the phonon spectrum is modified by interactions with the electrons, and
the electron energies are modified by their interactions with the phonons. These mutual interactions
have to be resolved self-consistently. Basically, the single particle states labeled by k, σ are no longer
good eigenstates in the presence of strong electron-phonon coupling. The class web site for this lecture
shows expressions for the moment λ of the α2(ω)F (ω) distribution, which roughly replaces the phe-
nomenological factor V in the Cooper pairing potential. The theory also includes the Coulomb repulsion
between the electrons through a coefficient µ∗. The theory successfully explains the deviations from
BCS universal values. More importantly, tunneling data at high bias (greater than ∆) reveals the finite
lifetime of the quasiparticles as they scatter, due to phonon interactions. It is possible to invert the
tunneling conductance vs. bias data to extract the α2(ω)F (ω) function. In the case of Pb this was found
to closely resemble the phonon density of states. This provides strong evidence that the Boson that
produces Cooper pairing is the phonon, at least in Pb, and many other ‘conventional’ superconductors.

In more detail, the gap becomes complex, and a function of energy ∆(E). The energy-dependent phase
of this gap is distinct from the coherent phase of the BCS gap. The imaginary part of the gap, Im[∆], is
due to the decay of the quasiparticles and the creation of real phonons. The real part of the gap, Re[∆],
goes through a resonant absorption when E ≈ ~ωphonon. This dispersion of the complex gap is evident
on slide 9 of the slides posted on the class web site.


